Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

نویسندگان

  • Jaime Cuevas
  • José Crossa
  • Osval A Montesinos-López
  • Juan Burgueño
  • Paulino Pérez-Rodríguez
  • Gustavo de Los Campos
چکیده

The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.

In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estima...

متن کامل

Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction.

Genomic tools allow the study of the whole genome, and facilitate the study of genotype-environment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with ...

متن کامل

Genomic Bayesian Prediction Model for Count Data with Genotype x Environment Interaction

Genomic tools allow the study of the whole genome, and facilitate the study of genotypeenvironment combinations and their relationship with phenotype. However, most genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this reason, appropriate genomic prediction models are needed for count data, since the conventional regression models used on count data with a...

متن کامل

اهمیت خویشاوندی ژنتیکی و رکورد فنوتیپی بر صحت ژنومی داده‌های جانهی شبیه‌ سازی شده با استفاده از مدل های حیوانی در حضور اثرات متقابل ژنوتیپ و محیط

The objective of this study was to investigate the role of genetic relationships between training and validation set with considering different ratio of phenotypic records of training set on accuracy of genomic prediction via animal models containing genotype × environment interactions in simulated imputation data. For this purpose, four different scenarios using 15k density containing differen...

متن کامل

Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method

The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017